Разработан новый метод генерации электричества из воды

Разработан новый метод генерации электричества из воды

Морская вода источник электрической энергии

Учёные с помощью солнечного света смогли превратить морскую воду (H2O) в перекись водорода (H2O2), которую можно использовать в топливных элементах для выработки электроэнергии. Это первый способ производства перекиси водорода на основе фотохимического катализа, который показал достаточно высокую эффективность, обеспечивая возможность широкомасштабного использования Н2О2 в топливных элементах.

Учёные Университета Осаки под руководством Шуничи Фукузуми опубликовали в последнем выпуске журнала Nature Communications научную статью (Seawater usable for production and consumption of hydrogen peroxide as a solar fuel) о предложенном ими фотокаталитическом методе производства перекиси водорода.

«Самый избыточный на планете ресурс, морская вода, используется для получения топлива в виде перекиси водорода», — сказал Фукузуми.

Самое большое преимущество жидкой перекиси водорода (H2O2), используемой вместо газообразного водорода (H2), который сегодня применяется в большинстве топливных элементов, в том, что жидкость с высокой плотностью гораздо легче хранить. Как правило, газообразный водород необходимо предварительно сжимать, а в некоторых случаях охлаждать до жидкого состояния при криогенных температурах. В отличие от такого подхода, жидкую перекись высокой плотности гораздо удобней и безопасней хранить и транспортировать.

Проблема заключается в том, что до сих пор не было разработано эффективного фотокаталитического способа получения жидкой перекиси. Существуют способы получения Н2О2 без использования солнечного света, но они требуют столько энергии, что теряется всякий смысл их практического использования.

Перекись водорода

Учёные разработали новую фотоэлектрохимическую ячейку на основе солнечного фотоэлемента, которая производит перекись водорода. Когда солнечный свет падает на фотокатализатор, тот начинает поглощать фотоны и использует их энергию для инициирования химических реакций (окисление морской воды и уменьшение содержания кислорода), которые в итоге производят перекись водорода.

После воздействия света на ячейку в течение 24 часов концентрация перекиси в морской воде составила около 48 миллимолей, что значительно превышает значения, полученные в предыдущих экспериментах в чистой воде, около 2 миллимолей. Исследуя причину такого большого различия, исследователи обнаружили, что отрицательно заряженный хлор в морской воде значительно усиливает процесс фотохимического катализа, обеспечивая получение более высокой концентрации перекиси.

В целом, система имеет КПД преобразования солнечной энергии в электричество 0,28 процентов. Фотокаталитическое производство перекиси из морской воды имеет КПД 0,55 процентов, а КПД топливного элемента около 50 процентов.

Хотя общая эффективность выгодно отличается от других преобразователей солнечного света в электроэнергию, она по-прежнему значительно ниже, чем производительность обычных солнечных элементов. Исследователи ожидают, что производительность можно будет повысить в будущем за счёт использования в фотоэлектрохимических ячейках новых материалов. Они также планируют найти способы снижения себестоимости производства.

«В будущем мы планируем разработать способ крупномасштабного производства Н2О2 из морской воды с низкой себестоимостью, — сказал Фукузуми. — Он сможет заменить нынешний дорогостоящий способ производства перекиси из водорода и кислорода».

В Германии научились перерабатывать выбросы коксов... Германские инженеры нашли новое применение загрязнителям воздуха. Иннвационная технология была впервые применена в Дуйсбурге, а суть ее состоит в том...
Крупнейшую опреснительную установку на солнечной э... Просто принять душ где ни будь на западе Калифорнии сегодня является самой настоящей проблемой: скорее всего для этого придется воспользоваться ведро...
Новый метод вторичной переработки магнитов разрабо... Редкоземельные металлы, которые входят в 17 группу химических элементов, являются одним из самых востребованных в мире сырьевых материалов. Они испол...
Термоядерный стелларатор Wendelstein 7-X успешно п... Немецкие ученые запустили торообразный термоядерный реактор, который позволяет разогреть водород до температуры, при которой он становится плазмой. И...

Сохрани, чтобы не потерять